anime

anime

sábado, 31 de mayo de 2014

---Herramientas para verificar funcionamiento de Red---

Comandos MS-DOS de Red

1)     hostname: Muestra el nombre de la computadora que estamos utilizando.

2)     ipconfig: Muestra y permite renovar la configuración de todos los interfaces de red.

  ipconfig/all: Muestra la configuración de las conexiones de red.

3)   net: Permite administrar usuarios, carpetas compartidas, servicios, etc.

net view: muestra las computadoras conectadas a la red.
net share: muestra los recursos compartidos del equipo, para la red.
net user: muestra las cuentas de usuario existentes en el equipo.
net localgroup: muestra los grupos de usuarios existentes en el equipo.

4)    ping: Comando para comprobar si una computadora está conectada a la red o no.

ping (nombre del equipo),        Ejemplo : ping compu_hector

ping (numero IP del equipo),    Ejemplo : ping 156.156.156.1

----Capa 7 (Aplicación)----

El nivel de aplicación actúa como ventana para los usuarios y los procesos de aplicaciones para tener acceso a servicios de red. Esta capa contiene varias funciones que se utilizan con frecuencia:

  • Uso compartido de recursos y redirección de dispositivos
  • Acceso a archivos remotos
  • Acceso a la impresora remota
  • Comunicación entre procesos
  • Administración de la red
  • Servicios de directorio
  • Mensajería electrónica (como correo)
  • Terminales virtuales de red

----Capa 6 (Presentacion)---

La capa de presentación da formato a los datos que deberán presentarse en la capa de aplicación. Se puede decir que es el traductor de la red. Esta capa puede traducir datos de un formato utilizado por la capa de la aplicación a un formato común en la estación emisora y, a continuación, traducir el formato común a un formato conocido por la capa de la aplicación en la estación receptora.

La capa de presentación proporciona:

  • Conversión de código de caracteres: por ejemplo, de ASCII a EBCDIC.
  • Conversión de datos: orden de bits, CR-CR/LF, punto flotante entre enteros, etc.
  • Compresión de datos: reduce el número de bits que es necesario transmitir en la red.
  • Cifrado de datos: cifra los datos por motivos de seguridad. Por ejemplo, cifrado de contraseñas.

---Capa 5 (sesión)---

La capa de sesión permite el establecimiento de sesiones entre procesos que se ejecutan en diferentes estaciones. Proporciona:

  • Establecimiento, mantenimiento y finalización de sesiones: permite que dos procesos de aplicación en diferentes equipos establezcan, utilicen y finalicen una conexión, que se denomina sesión.
  • Soporte de sesión: realiza las funciones que permiten a estos procesos comunicarse a través de una red, ejecutando la seguridad, el reconocimiento de nombres, el registro, etc.

---Capa 4 (Transporte)---

La capa de transporte garantiza que los mensajes se entregan sin errores, en secuencia y sin pérdidas o duplicaciones. Libera a los protocolos de capas superiores de cualquier cuestión relacionada con la transferencia de datos entre ellos y sus pares.

El tamaño y la complejidad de un protocolo de transporte depende del tipo de servicio que pueda obtener de la capa de transporte. Para tener una capa de transporte confiable con una capacidad de circuito virtual, se requiere una mínima capa de transporte. Si la capa de red no es confiable o solo admite datagramas, el protocolo de transporte debería incluir detección y recuperación de errores extensivos.

La capa de transporte proporciona:

  • Segmentación de mensajes: acepta un mensaje de la capa (de sesión) que tiene por encima, lo divide en unidades más pequeñas (si no es aún lo suficientemente pequeño) y transmite las unidades más pequeñas a la capa de red. La capa de transporte en la estación de destino vuelve a ensamblar el mensaje.
  • Confirmación de mensaje: proporciona una entrega de mensajes confiable de extremo a extremo con confirmaciones.
  • Control del tráfico de mensajes: indica a la estación de transmisión que "dé marcha atrás" cuando no haya ningún búfer de mensaje disponible.
  • Multiplexación de sesión: multiplexa varias secuencias de mensajes, o sesiones, en un vínculo lógico y realiza un seguimiento de qué mensajes pertenecen a qué sesiones (consulte la capa de sesiones).

----Capa 3 (capa de datos)---

La capa de red controla el funcionamiento de la subred, decidiendo qué ruta de acceso física deberían tomar los datos en función de las condiciones de la red, la prioridad de servicio y otros factores. Proporciona:

  • Enrutamiento: enruta tramas entre redes.
  • Control de tráfico de subred: los enrutadores (sistemas intermedios de capa de red) pueden indicar a una estación emisora que "reduzca" su transmisión de tramas cuando el búfer del enrutador se llene.
  • Fragmentación de trama: si determina que el tamaño de la unidad de transmisión máxima (MTU) que sigue en el enrutador es inferior al tamaño de la trama, un enrutador puede fragmentar una trama para la transmisión y volver a ensamblarla en la estación de destino.
  • Asignación de direcciones lógico-físicas: traduce direcciones lógicas, o nombres, en direcciones físicas.
  • Cuentas de uso de subred: dispone de funciones de contabilidad para realizar un seguimiento de las tramas reenviadas por sistemas intermedios de subred con el fin de producir información de facturación. 
  • Subred de comunicaciones

    El software de capa de red debe generar encabezados para que el software de capa de red que reside en los sistemas intermedios de subred pueda reconocerlos y utilizarlos para enrutar datos a la dirección de destino.

    Esta capa libera a las capas superiores de la necesidad de tener conocimientos sobre la transmisión de datos y las tecnologías de conmutación intermedias que se utilizan para conectar los sistemas de conmutación. Establece, mantiene y finaliza las conexiones entre las instalaciones de comunicación que intervienen (uno o varios sistemas intermedios en la subred de comunicación).

    En la capa de red y las capas inferiores, existen protocolos entre pares entre un nodo y su vecino inmediato, pero es posible que el vecino sea un nodo a través del cual se enrutan datos, no la estación de destino. Las estaciones de origen y de destino pueden estar separadas por muchos sistemas intermedios. 

---Capa 2 (vinculo de datos)---

La capa de vínculo de datos ofrece una transferencia sin errores de tramas de datos desde un nodo a otro a través de la capa física, permitiendo a las capas por encima asumir virtualmente la transmisión sin errores a través del vínculo. Para ello, la capa de vínculo de datos proporciona:

  • Establecimiento y finalización de vínculos: establece y finaliza el vínculo lógico entre dos nodos.
  • Control del tráfico de tramas: indica al nodo de transmisión que "dé marcha atrás" cuando no haya ningún búfer de trama disponible.
  • Secuenciación de tramas: transmite y recibe tramas secuencialmente.
  • Confirmación de trama: proporciona/espera confirmaciones de trama. Detecta errores y se recupera de ellos cuando se producen en la capa física mediante la retransmisión de tramas no confirmadas y el control de la recepción de tramas duplicadas.
  • Delimitación de trama: crea y reconoce los límites de la trama.
  • Comprobación de errores de trama: comprueba la integridad de las tramas recibidas.
  • Administración de acceso al medio: determina si el nodo "tiene derecho" a utilizar el medio físico.

---Capa 1 (Fisica)----

la que se encarga de la topología de la red y de las conexiones globales de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
  • Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
  • Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
  • Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
  • Transmitir el flujo de bits a través del medio.
  • Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
  • Garantizar la conexión (aunque no la fiabilidad de dicha conexión).



----Modelo OSI----

¿Que es?
El modelo de interconexión de sistemas abiertos también llamado OSI es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1980. Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.


El núcleo de este estándar es el modelo de referencia OSI, una normativa formada por siete capas que define las diferentes fases por las que deben pasar los datos para viajar de un dispositivo a otro sobre una red de comunicaciones.
Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan desmarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo se usa en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.

----Dibujos de la Arquitectura Token Ring----


----Arquitectura Token Ring----

Token Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología física en anillo y técnica de acceso de paso de testigo, usando un frame de 3 bytes llamado token que viaja alrededor del anillo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.

Características principales

  • Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación múltiple (MSAU o MAU), la red puede verse como si fuera una estrella. Tiene topología física estrella y topología lógica en anillo.
  • Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.
  • La longitud total de la red no puede superar los 366 metros.
  • La distancia entre una computadora y el MAU no puede ser mayor que 100 metros (por la degradación de la señal después de esta distancia en un cable de par trenzado).
  • A cada MAU se pueden conectar ocho computadoras.
  • Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps.
  • Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 110 Mbps pero la mayoría de redes no la soportan.

----Dibujos de la Arquitectura Arcnet---

-----Arquitectura Arcnet---

Arquitectura de red de área local desarrollado por Datapoint Corporation en 1977 que utiliza una técnica de acceso de paso de testigo como el Token Ring. La topología física es en forma de estrella mientras que la topología lógica es en forma de anillo, utilizando cable coaxial y hubs pasivos (hasta 4 conexiones) o activos.
La velocidad de trasmisión rondaba los 2 MBits, aunque al no producirse colisiones el rendimiento era equiparable al de las redes ethernet. Empezaron a entrar en desuso en favor de Ethernet al bajar los precios de éstas. Las velocidades de sus transmisiones son de 2.6 Mbits/s. Soporta longitudes de hasta unos 609 m (2000 pies).

Características

  • Aunque utilizan topología en bus, suele emplearse un concentrador para distribuir las estaciones de trabajo usando una configuración de estrella.
  • El cable que usan suele ser coaxial, aunque el par trenzado es el más conveniente para cubrir distancias cortas.
  • Usa el método de paso de testigo, aunque físicamente la red no sea en anillo. En estos casos, a cada máquina se le da un número de orden y se implementa una simulación del anillo, en la que el token utiliza dichos números de orden para guiarse.
  • El cable utiliza un conector BNC giratorio.

----Dibujos de Arquitectura Ethernet---



http://3.bp.blogspot.com/-xrtzFsEMTxg/T0fbOLZSxtI/AAAAAAAAAA0/FEcm_hoVuHI/s1600/ethernet3.gif

viernes, 30 de mayo de 2014

----Arquitectura Ethernet---

es un estándar de redes de área local para computadores con acceso al medio por detección de la onda portadora y con detección de colisiones (CSMA/CD). Su nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3, siendo usualmente tomados como sinónimos. Se diferencian en uno de los campos de la trama de datos. Sin embargo, las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.


Las tecnologías Ethernet que existen se diferencian en estos conceptos:

Velocidad de transmisión
- Velocidad a la que transmite la tecnología.
Tipo de cable
- Tecnología del nivel físico que usa la tecnología.
Longitud máxima
- Distancia máxima que puede haber entre dos nodos adyacentes (sin estaciones repetidoras).
Topología
- Determina la forma física de la red. Bus si se usan conectores T (hoy sólo usados con las tecnologías más antiguas) y estrella si se usan hubs (estrella de difusión) o switches (estrella conmutada).


----Croquis de RED---

croquis de red


----Tarea Clases de IP---



viernes, 11 de abril de 2014

---- Router--- .

es un dispositivo de hardware para interconexión de red de computadoras que opera en la capa tres (nivel de red). Este dispositivo permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.
Los enrutadores operan en dos planos diferentes:
*Plano de Control.
*Plano de Reenvío.

jueves, 10 de abril de 2014

---- Switch----

Conmutador (dispositivo de red) Switch (en castellano "conmutador") es un dispositivo electrónico de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI (Open Systems Interconnection). Un conmutador interconecta dos o más segmentos de red, funcionando de manera similar a los puentes (bridges), pasando datos de un segmento a otro, de acuerdo con la dirección MAC de destino de los datagramas en la red.

---Hub---

Es un dispositivo que se utiliza como punto de conexión entre los componentes de una red de área local. De esta manera, mediante la acción del hub se logra que diversos equipos puedan estar conectados en la misma red. Para lograrlo, está compuesto por varios puertos a partir de los que se distribuye la información. Así, cuando un paquete de datos ingresa por uno de los puertos, es retransmitido por el resto de los puertos a los otros componentes que integran la red, de forma tal que todas estas terminales puedan compartir archivos, impresoras, etc. Y estén comunicadas continuamente.
También es llamado repartidor multipuesto, existen 3 clases:
•    Pasivo: No necesita energía eléctrica.
•    Activo: Necesita alimentación.
•    Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.

---Repetidor---

Los repetidores reciben señales y las retransmiten a su potencia y definición originales. Esto incrementa la longitud práctica de un cable (si un cable es muy largo, la señal se debilita y puede ser irreconocible).
Instalar un repetidor entre segmentos de cable permite a las señales llegar más lejos. Los repetidores no traducen o filtran las
Señales. Para que funcione un repetidor, ambos segmentos conectados al repetidor deben utilizar el mismo método de acceso.

Concentrador

un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.Son la base para las redes de topología tipo estrella, También es llamado repetidor multipuerto. 

12. Tecnologías y sistemas de conmutación y enrutamiento.

11. Elaborar cables de red


miércoles, 9 de abril de 2014

---Tarea de investigación de Protocolos---


---Tarea de investigación de cables--



Tarea de inventario


----Cable de fibra óptica---

Está constituido por uno o más hilos de fibra de vidrio, cada fibra de vidrio consta de:
·         Un núcleo central de fibra con un alto índice de refracción.
·         Una cubierta que rodea al núcleo, de material similar, con un índice de refracción ligeramente menor.
·         Una envoltura que aísla las fibras y evita que se produzcan interferencias entre fibras adyacentes, a la vez que proporciona protección al núcleo. Cada una de ellas está rodeada por un revestimiento y reforzada para proteger a la fibra.

Es un medio excelente para la transmisión de información porque tiene: gran ancho de banda, baja atenuación de la señal, integridad, inmunidad a interferencias electromagnéticas, alta seguridad y larga duración.

 Tipos de Fibra Óptica
v Monomodo
Cuando el valor de la apertura numérica es inferior a 2,405, un único modo electromagnético viaja a través de la línea y por tanto ésta se denomina monomodo. Sólo se propagan los rayos paralelos al eje de la fibra óptica, consiguiendo el rendimiento máximo.

v Multimodo
Cuando el valor de la apertura numérica es superior a 2,405, se transmiten varios modos electromagnéticos por la fibra, denominándose por este motivo fibra multimodo.


---- Cable de par trenzado----

Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado. Cada cable de este tipo está compuesto por un serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto.
El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.
 Tipos de Par-Trenzado

v Cable De Par Trenzado No Apantallado (Utp, Unshielded Twisted Pair):
Cable de pares trenzados más simple y empleado, sin ningún tipo de apantalla adicional y con una impedancia característica de 100 Ohmios. El conector más frecuente con el UTP es el RJ45, parecido al utilizado en teléfonos RJ11 (pero un poco mas grande), aunque también puede usarse otro (RJ11, DB25,DB11,etc), dependiendo del adaptador de red.Es sin duda el que hasta ahora ha sido mejor aceptado, por su costo accesibilidad y fácilinstalación. Sus dos alambres de cobre torcidos aislados con plástico PVC, han demostrado un buen desempeño en las aplicaciones de hoy. Sin embargo a altas velocidades puede resultar vulnerable a las interferencias electromágneticas del medio ambiente.



v Cable De Par Trenzado Apantallados (Stp, Kshielded Twisted Pair):
En este caso, cada par va recubierto por una malla conductora que actúa de apantalla frente a interferencias y ruido eléctrico. Su impedancia es de 150 OHMIOS.
El nivel de protección del STP ante perturbaciones externas es mayor al ofrecido por UTP. Sin embargo es más costoso y requiere más instalación. La pantalla del STP para que sea más eficaz requiere una configuración de interconexión con tierra (dotada de continuidad hasta el terminal), con el STP se suele utilizar conectores RJ49.
Es utilizado generalmente en las instalaciones de procesos de datos por su capacidad y sus buenas características contra las radiaciones electromagnéticas, pero el inconveniente es que es un cable robusto, caro y difícil de instalar.


v Cable De Par Trenzado Con Pantalla Global (Ftp, Foiled Twisted Pair):
En este tipo de cable como en el UTP, sus pares no están apantallados, pero sí dispone de una apantalla global para mejorar su nivel de protección ante interferencias externas. Su impedancia característica típica es de 120 OHMIOS y sus propiedades de transmisión son mas parecidas a las del UTP. Además puede utilizar los mismos conectores RJ45.
Tiene un precio intermedio entre el UTP y STP.


---Cable coaxial---

Está compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas.
Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.
El cable coaxial consiste de un núcleo sólido de cobre rodeado por un aislante, una combinación de blindaje y alambre de tierra y alguna otra cubierta protectora.

4. Estructura y configuración de medios de transmisión física

El propósito fundamental de la estructura física de la red consiste en transportar, como flujo de bits, la información de una máquina a otra. Para realizar esta función se van a utilizar diversos medios de transmisión. 

Los cables son el componente básico de todo sistema de cableado. Existen diferentes tipos de cables.

En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificios:

v  Coaxial
v  Par Trenzado
v  Fibra Óptica

---Adaptador de red---

Adaptadores de red

Dispositivo o placa (tarjeta) que se anexa a una computadora que permite comunicarla con otras computadoras formando una red.

  • Una adaptador de red puede permitir crear una red inalambrica o alambrada.
  • Puede venir en forma de placa o tarjeta, que se inserta en la placa madre, estas son llamas placas de red.
  • También pueden venir en pequeños dispositivos que se insertan generalmente en un puerto USB, estos suelen brindar generalmente una conexión inalambrica.
Una tarjeta de red es un dispositivo electrónico que consta de las siguientes partes: Interface de conexión al bus del ordenador. 
  • Medio de transmisión al Conexión de la interfaz.
  • Componentes electrónicos internos, propios de la tarjeta. 
  • Elementos de configuración de la tarjeta: puentes, conmutadores, etc.
 Tipo de Transceptor:Algunas tarjetas de red incorporan varias salidas con diversos conectores, de modo que se puede escoger entre ellos en función de las necesidades. Algunas de estas salidas necesitan transceptor externo y hay que indicárselo a la tarjeta cuando se configura. Tradicionalmente, estos parámetros se configuraban en la tarjeta a través de puentes (jumpers) y conmutadores (switches). Actualmente está muy extendido el modo de configuración por software, que no requiere la manipulación interna de hardware: los parámetros son guardados por el programa configurador que se suministra con la tarjeta en una memoria no volátil que reside en la propia tarjeta.

3. adaptadores de red

Practica 2

En esta hicimos el ping a una computadora vecina

Practica 1

usamos el Ping para conocer la IP de nuestra computadora

martes, 8 de abril de 2014

PROTOCOLOS DE COMUNICACION


Un protocolo de comunicaciones es un conjunto de reglas y normas que permiten que dos o más entidades de un sistema de comunicación se comuniquen entre ellos para transmitir información por medio de cualquier tipo de variación de una magnitud física. Se trata de las reglas o el estándar que define la sintaxis, semántica y sincronización de la comunicación, así como posibles métodos de recuperación de errores. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos.
Por ejemplo, el protocolo sobre palomas mensajeras permite definir la forma en la que una paloma mensajera transmite información de una ubicación a otra, definiendo todos los aspectos que intervienen en la comunicación: tipo de paloma, cifrado del mensaje, tiempos de espera antes de dar la paloma por 'perdida'... y cualquier regla que ordene y mejore la comunicación.
En el caso concreto de las computadoras, un protocolo de comunicación, también llamado en este caso protocolo de red, define la forma en la que los distintos mensajes o tramas de bit circulan en una red de computadoras.

 



EL PROTOCOLO TCP/IP

El protocolo de red TCP/IP se podría definir como el conjunto de protocolos básicos de comunicación, de redes, que permite la transmisión de información en redes de ordenadores. Una conexión TCP no es más que es una corriente de bytes, no una corriente de mensajes o textos por así decirlo.

2. Protoclos de comunicación

---Topologia en bus---


En esta topología, los elementos que constituyen la red se disponen linealmente, es decir, en serie y conectados por medio de un cable; el bus.
Las tramas de información emitidas por un nodo (terminal o servidor) se propagan por todo el bus(en ambas direcciones), alcanzado a todos los demás nodos.
Cada nodo de la red se debe encargar de reconocer la información que recorre el bus, para así determinar cual es la que le corresponde, la destinada a él.
Es el tipo de instalación más sencillo y un fallo en un nodo no provoca la caída del sistema de la red.
Una topología de bus es multipunto.
Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas.
Un cable de conexión es una conexión que va desde el dispositivo al cable principal.
Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.
Esta topología permite que todas las estaciones reciban la información que se transmite, una estación trasmite y todas las restantes escuchan. 


  •  
  • VENTAJAS:

  • Facilidad de implementación y crecimiento.
  • Simplicidad en la arquitectura.
  • Requiere de menor cantidad de cables
  • Es Más fácil conectar nuevos nodos a la red

    DESVENTAJAS:

  • Un problema en el canal usualmente degrada toda la red.
  • El desempeño se disminuye a medida que la red crece.
  • El canal requiere ser correctamente cerrado (caminos cerrados).
  • Altas pérdidas en la transmisión debido a colisiones entre mensajes.
  • Es una red que ocupa mucho espacio.
  • Es difícil detectar el origen de un problema cuando toda la red cae.
  • Se requiere terminadores. 
  •  

  •  

    --Topologia en anillo---





    Los nodos de la red se disponen en un anillo cerrado conectados a él mediante enlaces punto a punto.
    La información describe una trayectoria circular en una única dirección y el nodo principal es quien gestiona conflictos entre nodos al evitar la colisión de tramas de información.
    En este tipo de topología, un fallo en un nodo afecta a toda la red aunque actualmente hay tecnologías que permiten mediante unos conectores especiales, la desconexión del nodo averiado para que el sistema pueda seguir funcionando.
    La topología de anillo esta diseñada como una arquitectura circular, con cada nodo conectado directamente a otros dos nodos.
    Toda la información de la red pasa a través de cada nodo hasta que es tomado por el nodo apropiado.
    Este esquema de cableado muestra alguna economía respecto al de estrella. El anillo es fácilmente expandido para conectar mas nodos, aunque en este proceso interrumpe la operación de la red mientras se instala el nuevo nodo. Así también, el movimiento físico de un nodo requiere de dos pasos separados: desconectar para remover el nodo y otra vez reinstalar el nodo en su nuevo lugar. 


    VENTAJAS:



  • Los cuellos de botellas son muy pocos frecuentes.
  • Es Más fácil conectar nuevos nodos a la red.
  • Requiere menos cable que una topología estrella.
  • Simplicidad de arquitectura. 
  •  


  • DESVENTAJAS:


  • Si falla el canal o una estación, las restantes quedan incomunicadas.
  • Toda la red se caería se hubiera una ruptura en el cable principal
  • Se requiere terminadores.
  • Es difícil detectar el origen de un problema cuando toda la red cae.
  • El canal usualmente degradará a medida que la red crece.
  • Lentitud en la transferencia de datos.
  • Es muy compleja su administración, ya que hay que definir una estación para que controle el token 

  •  


  •  


    ---Topologia estrella----


    Todos los elementos de la red se encuentran conectados directamente mediante un enlace punto a punto al nodo central de la red, quien se encarga de gestionar las transmisiones de información por toda la estrella.
    La topología de Estrella es una buena elección siempre que se tenga varias unidades dependientes de un procesador, esta es la situación de una típica mainframe, donde el personal requiere estar accesando frecuentemente esta computadora.
    En este caso, todos los cables están conectados hacia un solo sitio, esto es, un panel central.
    Resulta económico la instalación de un nodo cuando se tiene bien planeado su establecimiento, ya que este requiere de una cable desde el panel central, hasta el lugar donde se desea instalarlo.
    Se utiliza sobre todo para redes locales.
    La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología.
    El nodo central en estas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes.
    Una topología en estrella es más barata que una topología en malla.
    En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.
    Este factor hace que también sea más fácil de instalar y reconfigurar.
    Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador. 



    VENTAJAS:



  • Gran facilidad de instalación
  • Posibilidad de desconectar elementos de red sin causar problemas
  • Facilidad para la detección de fallo y su reparación
  • Tiene los medios para prevenir problemas.
  • Si una PC se desconecta o se rompe el cable solo queda fuera de la red esa PC.
  • Facil de agregar, reconfigurar arquitectura PC.
  • Facil de prevenir daños o conflictos. 
  •  
  • ---Topologias Hibridas----

    En una topología híbrida, se combinan dos o más topologías para formar un diseño de red completo. Raras veces, se diseñan las redes utilizando un solo tipo de topología. Por ejemplo, es posible que desee combinar una topología en estrella con una topología de bus para beneficiarse de las ventajas de ambas.
    Importante: En una topología híbrida, si un solo equipo falla, no afecta al resto de la red.
    Normalmente, se utilizan dos tipos de topologías híbridas: topología en estrella-bus y topología en estrella-anillo.

    En estrella-bus: En una topología en estrella-bus, varias redes de topología en estrella están conectadas a una conexión en bus.
    Cuando una configuración en estrella está llena, podemos añadir una segunda en estrella y utilizar una conexión en bus para conectar las dos topologías en estrella.

    En una topología en estrella-bus, si un equipo falla, no afectará al resto de la red. Sin embargo, si falla el componente central, o concentrador, que une todos los equipos en estrella, todos los equipos adjuntos al componente fallarán y serán incapaces de comunicarse.

    En estrella-anillo: En la topología en estrella-anillo, los equipos están conectados a un componente central al igual que en una red en estrella. Sin embargo, estos componentes están enlazados para formar una red en anillo.
    Al igual que la topología en estrella-bus, si un equipo falla, no afecta al resto de la red. Utilizando el paso de testigo, cada equipo de la topología en estrella-anillo tiene las mismas oportunidades de comunicación. Esto permite un mayor tráfico de red entre segmentos que en una topología en estrella-bus.

    ---Topologia Logica---



    La topología lógica
    Se refiere al trayecto seguido por las señales a través de la topología física, es decir, la manera en que las estaciones se comunican a través del medio físico. Las estaciones se pueden comunicar entre si, directa o indirectamente, siguiendo un trayecto que viene determinado por las condiciones de cada momento.
     se conoce como una topología pasiva, ya que las computadoras no regeneran la señal ni la pasan, como lo hacen en una de anillo. En cambio, son necesarios dispositivos de red especiales, como los repetidores, para regenerar las señales a través de grandes distancias. Otra diferencia es que las estaciones de trabajo en una topología lógica de bus deben lograr obtener el derecho de transmisión. A diferencia de las transmisiones en un anillo lógico, todas las computadoras reciben los datos.